Dr. Aaron Hill
Dr. Aaron Hill
Home
Experience
Research
People
Publications
Presentations
CV
Contact
Light
Dark
Automatic
2
Can Ingredients-Based Forecasting be Learned? Disentangling a Random Forest's Severe Weather Predictions
Alexandra C. Mazurek
,
Aaron Hill
,
Russ S. Schumacher
,
Hanna J. McDaniel
DOI
Observation Definitions and their Implications in Machine Learning-based Predictions of Excessive Rainfall
Aaron Hill
,
Russ S. Schumacher
,
Mitchell R. Green
DOI
Extended range machine-learning severe weather guidance based on the operational GEFS
A. J. Clark
,
K. A. Hoogewind
,
Aaron Hill
,
E. D. Loken
Slides
A New Paradigm for Medium-Range Severe Weather Forecasts: Probabilistic Random Forest–Based Predictions
Aaron Hill
,
Russ S. Schumacher
,
Israel L. Jirak
Cite
DOI
Influence of a portable near-surface observing network on experimental ensemble forecasts of deep convection hazards during VORTEX-SE
Aaron Hill
,
C. C. Weiss
,
D. C. Dowell
Slides
DOI
Forecasting excessive rainfall with random forests and a deterministic convection-allowing model
Aaron Hill
,
Russ S. Schumacher
Cite
Slides
DOI
From random forests to flood forecasts: A research to operations success story
Russ S. Schumacher
,
Aaron Hill
,
Mark Klein
,
Jim Nelson
,
Michael Erickson
,
Sarah M. Trojniak
,
Greg R. Herman
Cite
Slides
DOI
Factors influencing ensemble sensitivity-based targeted observing prediction at convection-allowing resolutions
Aaron Hill
,
C. C. Weiss
,
B. C. Ancell
Slides
DOI
Forecasting severe weather with random forests
Aaron Hill
,
G. R. Herman
,
R. S. Schumacher
Slides
DOI
Ensemble sensitivity analysis for mesoscale forecasts of dryline convection initiation
Aaron Hill
,
C. C. Weiss
,
B. C. Ancell
Slides
DOI
»
Cite
×